TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA7252AP

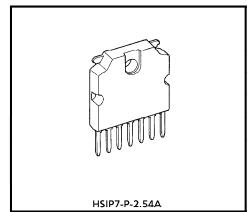
5.9W AUDIO POWER AMPLIFIER

The TA7252AP is audio power amplifier for consumer applications. It is designed for high power, low distortion and low noise. Since the package is a 7pin SIP (Single Inline Package), it greatly simplifies construction of a power amplifier both in design and assembly. It is suitable for car radio power amplifier.

FEATURES

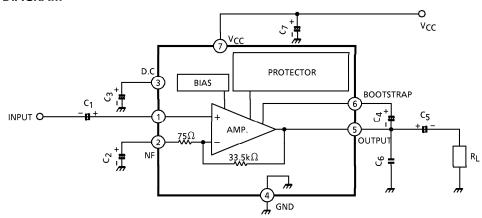
- Very Few External Parts
- **High Power**

:
$$P_{OUT}(1) = 5.9W$$
 (Typ.)
($V_{CC} = 13.2V$, $f = 1kHz$, $THD = 10\%$, $R_L = 4\Omega$)
 $P_{OUT}(2) = 9.6W$ (Typ.)
($V_{CC} = 13.2V$, $f = 1kHz$, $THD = 10\%$, $R_L = 2\Omega$)


- Low Distortion
 - : THD = 0.07% (Typ.) $(V_{CC} = 13.2V, f = 1kHz, P_{OUT} = 0.5W, R_{L} = 4\Omega)$
- Low Noise
 - : $V_{NO(1)} = 0.7 \text{mV}_{rms}$ (Typ.) $(V_{CC} = 13.2V, R_L = 4\Omega, G_V = 53dB, R_q = 10k\Omega, BW = 20Hz \sim 20kHz)$ $V_{NO}(2) = 0.4 \text{mV}_{rms}$ (Typ.) $(V_{CC} = 13.2V, R_L = 4\Omega, G_V = 53dB, R_q = 0, DIN Noise : DIN45405)$
- Protector : Thermal Shout Down, Over Voltage Protection, Short Protection
- Operating Supply Voltage Range : $V_{CC(opr.)} = 9 \sim 18V$

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
- and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

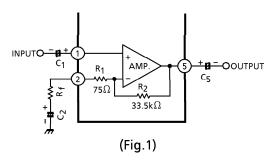
 The products described in this document are subject to foreign exchange and foreign trade control laws.

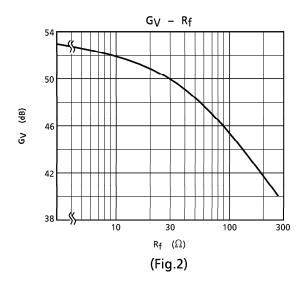

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.

Weight: 2.15g (Typ.)

BLOCK DIAGRAM


APPLICATION INFORMATION


1. Voltage gain adjustment

The closed loop voltage gain (G_V) is determined by R₁, R₂ and R_f.

$$G_V = 20 \ell og \frac{R_1 + R_f + R_2}{R_1 + R_f}$$

When $R_f = 0$, $G_V = 53dB$ (Typ.) is given.

The recommended voltage gain is more than 40dB.

2. Measures against oscillation

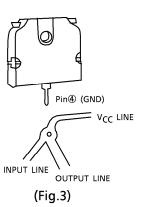
The purpose of capacitor: C₆ is to prevent oscillation.

This capacitor needs to be small temperature coefficient.

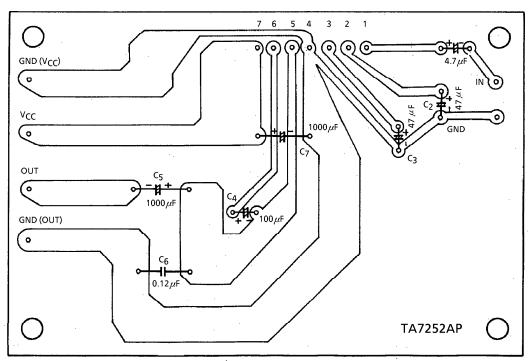
So ceramic capacitor is unsuitable.

A voltage gain less than 40dB results occasionally in a plastic oscillation.

3. Precaution at print board design


(1) GND line

The GND pin is only one in this Ic.


When there is some common impedance between the input side GND and the output side GND, electrical characteristics as THD degrade.

3 GND lines (input, output and $V_{\mbox{CC}}$ sides) should be branched at the pin as shown (Fig.3).

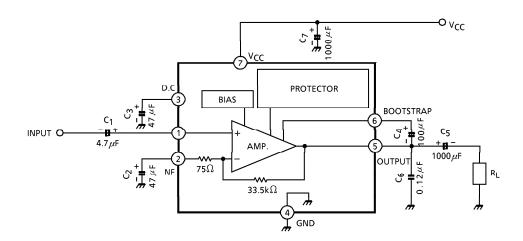
STANDARD P.C.B.

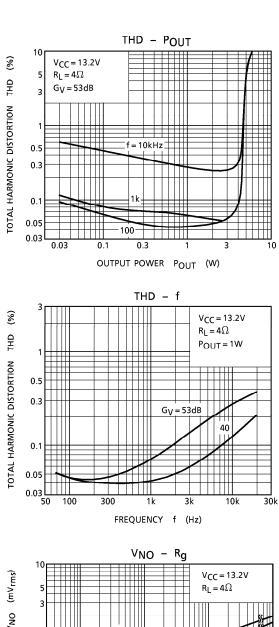
MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Peak Supply Voltage (0.2s)	V _{CC (surge)}	48	V
DC Supply Voltage	V _{CC} (DC)	25	V
Operating Supply Voltage	V _{CC (opr)}	18	V
Output Current (Peak)	I _{O (peak)}	4.5	Α
Power Dissipation	PD	15	W
Operating Temperature	T _{opr}	- 30∼75	°C
Storage Temperature	T _{stg}	- 55∼150	°C

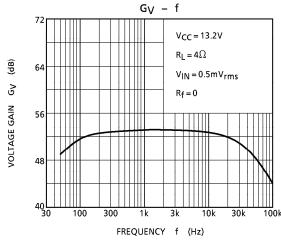
ELECTRICAL CHARACTERISTICS

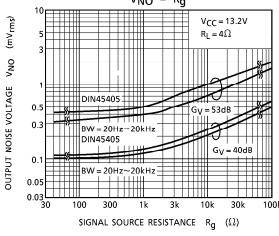
(Unless otherwise specified, V_{CC} = 13.2V, R_L = 4Ω , R_q = 600Ω , f = 1kHz, Ta = 25°C)

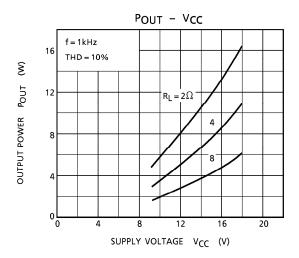

	,		9				
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Quiescent Current	lccQ	_	V _{IN} = 0	_	3.5	3.5	mA
Output Power	POUT (1)	_	THD = 10%		5.9	_	w
	POUT (2)	—	THD = 10%, $R_L = 2\Omega$	_	9.6	<u> </u>	۷V
Total Harmonic	THD (1)	_	P _{OUT} = 0.5W	_	0.07	0.5	%
Distortion	THD (2)	_	$P_{OUT} = 1W, R_L = 2\Omega$	_	0.10	_	70
Output Noise Voltage	V _{NO} (1)	_	$R_g = 10k\Omega$, $G_V = 53dB$ BW = 20Hz~20kHz	_	0.7	1.8	m)/
	V _{NO} (2)	_	$R_g = 0$, $G_V = 53$ dB DIN noise (DIN45405) filter	_	0.4	_	mV _{rms}
Voltage Gain	GV	_	$V_{IN} = 0.5 \text{mV}_{rms}$	51	53	55	dB
Ripple Rejection Ratio	R.R.		$R_g = 0$, $f_{ripple} = 100Hz$ $V_{ripple} = 0.775V_{rms}$ (0dBm)		- 62	- 50	dB
Input Resistance	R _{IN}	_	f = 1kHz	_	30	_	kΩ

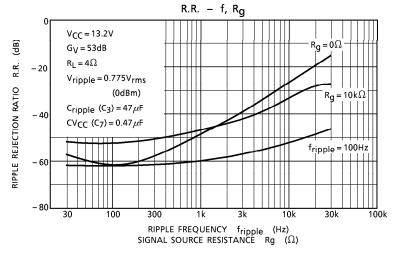

TYP. DC VOLTAGE OF EACH TERMINAL

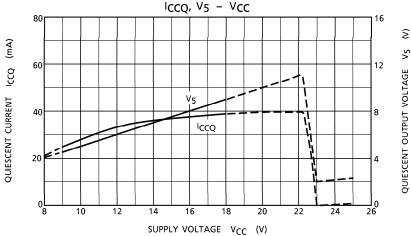
 $(V_{CC} = 13.2V, Ta = 25^{\circ}C)$

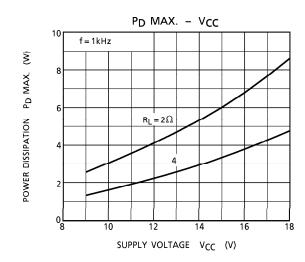

TERMINAL No.	1	2	3	4	5	6	7
DC Voltage (V)	1.5	1.5	6.6	GND	6.6	12.6	VCC

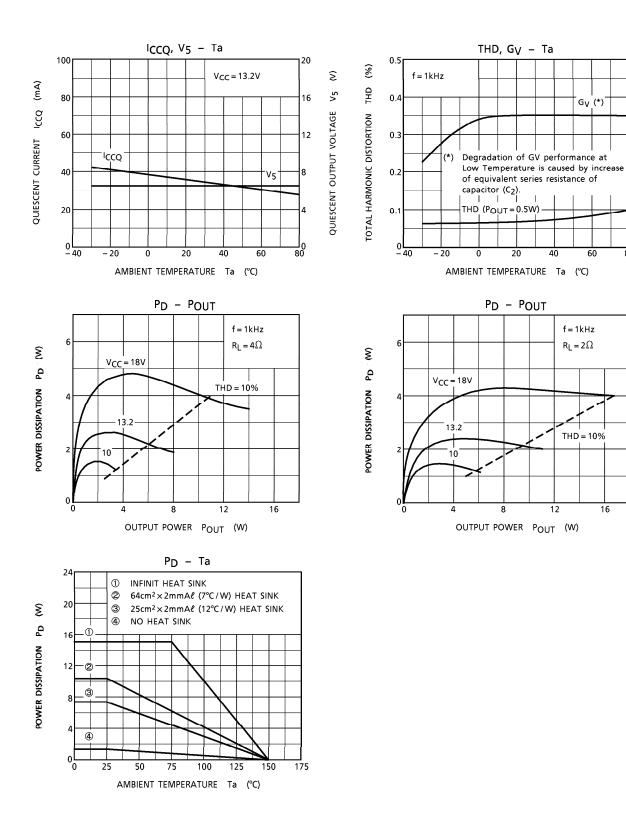

TEST CIRCUIT










59

_ქვ9 80

(dB)

9

VOLTAGE GAIN

OUTLINE DRAWING HSIP7-P-2.54A Unit: mm 16.0±0.2 0.8±0.2 3.0±0.3 Ø3.2±0.2 16.2±0.3 12.9 ± 0.3 0.5±0.2 0.6 +0.1 0.6±0.1 ⊕ Ø0.25 M 0.88TYP 2.54 1.2±0.1 17.0±0.2

Weight: 2.15g (Typ.)

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.